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Synopsis
The moment of inertia and the collective gyromagnetic ratio of even-even 

nuclei are calculated on the basis of wave functions that take a pairing interaction 
into account through the quasi-particle formalism. The results obtained theo
retically are found to be in reasonable agreement with experiments. The strength 
of the characteristic pair-correlation matrix element to be employed is estimated 
on the basis of data on odd-even mass differences. The dependence of the cal- 
culational results on the central-field parameters, as e. g. the eccentricity and the 
single-particle energy scale, is discussed. Other possible effects with particular 
relevance to the odd-even mass difference and the experimentally occurring energy 
gap are also surveyed.



Introduction

The regions of deformed nuclei are empirically characterized by the oc
currence of rotational bands in the nuclear excitation spectra. The charac
teristic energy spacings within these bands exhibit the well-known /(Z+l) 
dependence. The occurrence of such collective rotational states is largely 
independent of the detailed character of the intrinsic motion.

If one writes the rotational energy in the form

^rot = 0» (1)

the magnitude of the moment of inertia 3, entering in the proportionality con
stant, provides, however, more of a test of the detailed nuclear model. For 
even-even nuclei two more intrinsic constants determine most of the proper
ties of the low-lying states. One is the intrinsic quadrupole moment which 
determines the E2 transition strengths for gamma decay and for Coulomb 
excitation. The other constant, gR, the gyromagnetic ratio of the collective 
tlow, enters, for instance, when one measures the magnetic moment of a 
higher member of the ground-state rotational band. While 3 measures the 
mass of the collective Ilow, gR is associated with the magnetic properties of 
the flow.

For odd-A nuclei, magnetic moments and decay probabilities within a 
rotational band also depend on some of the details of the odd-particle orbital 
in addition to the said quantities connected with the even-even ground-state 
band.

The present work is based on the “cranking model”(1). This model cor
responds to the approximation that the self-consistent field determining the 
single-particle orbitals is cranked around externally. The rotational energy 
of the system is then calculated as the extra energy necessary for the nucleons 
to follow a slow rotation. The cranking model applied on the basis of a 
completely-independent-particle description gives a value of the moment of 
inertia approximately equal to that of rigid motion, provided one chooses 

1*  
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the equilibrium value of the deformation of the nuclear field(2,3). The em
pirical values amount, however, to only 20-50 °/o of the rigid moment of 
inertia.

Boiir and Mottei.son(2) gave general arguments to the effect that a re
sidual short-range attractive interaction between the particles—the latter 
being assumed in the first approximation to move independently in a com
mon field—would decrease the value of the moment of inertia. They also 
studied the effects explicitly in terms of a very simplified “two-particle mo
del’’. The strength that such an additional interaction must have to reproduce 
the empirical situation was found to be of the order usually attributed to the 
short-range inter-particle force. It remained, however, to treat such an inter
particle force in the case of a large number of particles outside of closed shells.

Such an additional inter-particle force, the pair-correlation force, which 
allows a complete treatment even when many particles are involved, has 
recently been introduced into nuclear physics by Boiir, Mottelson and 
Pines(4,3’5), by Belyaev(6), and by Soloviev(7) and other authors of the 
Bogolubov school. These authors employ and adapt to nuclear physics the 
elegant and powerful methods developed by Bardeen and others(8) to ex
plain the phenomenon of superconductivity. Such a pairing interaction is first 
of all capable of explaining the empirically encountered energy gap in the 
spectra of even-even nuclei. For an example of the empirical occurrence of 
such a gap, take for instance the region of rare-earth nuclei 150 <A< 190. 
The empirical average energy spacing of intrinsic excitations appears to be 
of the order of 150 keV (which seems to indicate a single-particle level 
density of about one level per 300 keV). In even-even nuclei in this region, 
however, there exist experimentally no excited states that are not of collective 
character below ~ 1000 keV. Such an energy gap cannot be explained by 
the mere assumption of an additional diagonal pairing energy, effective be
tween the pair of particles filling the degenerate orbitals K and — K. This 
would indeed forbid the breaking of such a pair, hut could not prevent low- 
lying two-particle excitations; the latter would occur with an average level 
density of one state per 300 keV or so, where about half the states would 
correspond to excited proton pairs and half to neutron pairs.

As pointed out, the pair-correlation interaction is capable of explaining 
this very conspicuous feature of even-even spectra. Expressed in terms of the 
single-particle slates of the average nuclear potential, the pair-correlation 
interaction thus scatters pairs of particles from the originally filled lower- 
lying, doubly degenerate single-particle orbitals into the higher-lying levels 
which are left unoccupied according to the earlier description. The new 
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total intrinsic wave function that most effectively utilizes this additional type of 
interaction and represents the ground state is then a state with a diffuse Fer
mi surface. In this state there exists a particular correlation between all the 
scattering pairs of particles within the region of diffuseness of the Fermi 
surface. Any excited state which thus involves the formation of a state ortho
gonal to the ground state then necessarily spoils some of the correlation and 
is therefore associated with an excitation energy of at least about the width 
of the diffuseness of the Fermi surface.

The investigation reported in this paper appears to bear out the contention 
that the introduced pair-correlation interaction in the regions of deformed 
nuclei is capable of explaining quantitatively at the same time the occur
rence and magnitude of the energy gap in the spectra of even-even nuclei, 
the even-odd-mass difference, and the magnitude of the moment of inertia 
associated with the collective rotation. A computation of the moment of 
inertia rather similar in scope to the one reported here has been carried 
through by Griffin and Rich(9). Also the investigations by Migdal(10) and 
by Hackenbroich (11) contain some numerical results largely in line with 
the results obtained in the publication cited above as well as with those of 
the present paper.

A preliminary report of the present calculations was presented at the 
Conference of the Swedish Physical Society in June, 1 959(12).

1. The Hamiltonian Describing the Intrinsic Motion 
of Deformed Nuclei with the Inclusion of the Pair Correlation

The application of the quasi-particle formalism in the nuclear case 
is described in detail in the paper by Belyaev(5). For the reader’s convenience 
we shall, however, give a short account of the most important results.

Let the Hamiltonian of the (static) self-consistent nuclear field be denoted 
Hs. The corresponding single-particle eigenfunctions are first characterized 
by the eigenvalue K of the angular-momentum component along the nuclear 
axis. This component is a constant of the motion provided Hs exhibits cy
lindrical symmetry. Furthermore, under the condition that the system is 
invariant under time reversal there always exist two states degenerate in 
energy, each of which is the time reverse of the other. Under the additional 
requirement of cylinder symmetry these may be labelled by the components 
of angular momentum K and — K.
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We define such a single-particle state as |r>, where v denotes both the 
7i-value and the additional quantum numbers necessary for the complete 
specification of the state, ft is sometimes convenient to consider such a state 
expanded in terms of eigenstates of the angular momentum j as follows:

\v> = X cj%K ■ (2)
j

We then define the conjugate | — v ) state, which corresponds to the nucleonic 
orbit with a completely reversed direction of motion compared with |v>, as*

* By redefinition of the spherical harmonics as Yim = il F/m, where Y[m is the conventional 
spherical harmonic defined in accordance with the Condon-Shortley<13> phase conventions, 
the parity sign in (3) or (—)l may be absorbed into | -v) (see Edmonds*14)). This parity sign 
is furthermore unimportant in our calculations.

(3) 
7

where the phases of/JÄ and %LK are defined in accordance with the conventions 
of Condon and Siiortley(13). As already pointed out, this definition of the 
conjugate state makes it equal to the time-reversed state 7’|v>, possibly 
apart from a conventional phase. In the following we shall employ the 
relation

T|r> = |-r>, (4)

which then fixes the arbitrary phase of T. W’e denote the eigenvalues of 
Hs by ev. Furthermore we assume that both ev and |v) can be taken with 
sufficient accuracy from the calculations by Mottelson and Nilsson(15, 16). 
The remaining, most important features of the inter-particle forces, which 
correspond to the very short range components of these forces, may now 
(cf. references 3, 5, 6) be simulated by the said pair-correlation interaction. 
In its simplified form this interaction may be written in second-quantization 
language . „ , L

//pair = (itr, a_vav . (5)
vv'

Eq. (5) represents the limiting assumption that the residual force acts only 
when two particles move in a J = 0 state. The said force displays the main 
features of the ô-force, although the latter has minor but non-negligible ef
fects on pairs of particles in states of non-vanishing but small angular 
momentum.

In this notation a one-particle state is expressed as follows in terms of 
the creation operator a„ :

|v> = a+|0>. (6)
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With the inclusion of Hs the total Hamiltonian takes the form

H = JT Ev(a^av + atva_v) — G a^atv>a_vav. (7)
v vv'

The great advantage of the second-quantization formalism is that it au
tomatically ensures compliance with the Paidi principle. This principle is 
built into the formalism by the usual anti-commutation relations which the 
av:s are required to obey.

The obvious aim is now to find an eigenfunction of the Hamiltonian (7) 
that is in addition an eigenfunction of the number operator

N = £ (av av + a-v a-v) ■ (8)
V

Bardeen et al. lind a convenient but approximate eigenfunction of (7) at 
the cost of weakening the latter condition*  and replacing it by a condition 
for the average value of AL

* A method for obtaining wave functions which fulfil this condition exactly has recently 
been discussed by B. Bayman<17).

<y/|;V|^> = n. (9)

In conformity with the fact that the number of particles is conserved only 
on the average, the solution corresponds physically to an ensemble of nuclei 
having slightly different numbers of nucleons. The procedure for treating 
this new simplified problem is then to introduce an auxiliary Hamiltonian H' :

H' = H—XN, (10)

where Â, treated as a Lagrangian multiplier, takes the role of the chemical 
potential. Thus Â represents the energy of the last added particle.
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II. The Bardeen-Cooper-Schrielïer Trial Function and the 
Canonical Transformation of the Hamiltonian Considered to a 

Hamiltonian Describing Independent Quasi-Particles

Bardeen et al. employ a trial wave function of the following type to 
minimize H':

I ° >• (li)
V

In eq. (11), uv and vv are free parameters, subject only to the normalization 
condition, which can be fulfilled by the requirement

u2v + v2v=\, (12)

and to the auxiliary condition (9), which takes the form

n = 2^X (13)
V

in terms of the parameters introduced.
The variational calculation leads to the equations(3, 6)

(sr- Â) 2 uvuv - uv>vv> (u2v -v2r)-2G v2uvvv = 0. (14)

The last term in (14) is small compared with the second (except in a region 
near the Fermi surface) and is usually neglected or assumed to be included 
in the self-consistent field energies er*.

If one chooses to neglect the third term, one obtains for uv and vv the
simple expressions

(15a)

(15b)

and for the energy of the ground state the expression

<H'> + A<V> = 2’e,2i'»-7^-GZ4.
y y

Concerning a method of accounting for this term by perturbation theory, see Appendix I. 
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where the third term is again of self-energy origin and is usually neglected 
as small compared with the second term (see the discussion below).

In eqs. (14) and (15) we have used the definitions

|/<XT-A)2+J2 (17)
and

J = (18)
V

Provided the ev:s (the single-particle energies of the deformed field) are 
given and G is known, the auxiliary parameters À and A can be determined 
from eqs. (18) and (13). The interpretation of as the probability of the 
state v being populated by a pair is borne out by eq. (13).

An equivalent way to obtain the ground-state energy given by eq. (16) 
and the corresponding wave function is provided by the Bogolubov-Vala- 
tin(8) transformation to quasi-particles (the creation operator of a quasi
particle is a linear combination of the corresponding particle operator and 
the operator creating a hole of opposite angular momentum)

ocv = uvav-vvatv, (19 a)

ot_v = ßv = uva_v + i’vaf. (19b)

In terms of ocv and ßv the transformed Hamiltonian H' is

H' = U' + H'1 + H'0+H[nt (20)

when written in its normal form, i. e. with a+, ß+ in front of ß, oc. In terms 
of the quasi-particle operators, U' is then a constant, is an operator 
that can destroy and recreate one quasi-particle at a time (and, furthermore, 
contains only the particular combinations otv and ß^ßv), while H2'o can 
either destroy or create two quasi-particles. The operator H(nt contains 
products of four-quasi-particle operators and can be split up into the terms 
ff22, -H31 and H^o (the notation should be obvious from the above). It is 
discussed in more detail by Belyaev(6) and in Appendix I of the present 
paper.

The imposed condition that vanishes identically leads to eq. (14), 
whereby uv and vv are determined. As is a function only of the occu
pation number of the quasi-particles, we are then left with a system of 
non-interacting quasi-particles in the approximation that may be 
neglected. Indeed, as far as the ground state, i. e. the no-quasi-particle state, 
is concerned, only //4'0 of the neglected term has non-vanishing matrix 
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elements connected with this state'. The magnitude of this coupling is thus 
a measure of the lack of generality of the trial function (11). In this respect
the quasi-particle formalism forms a complement to the variational proce
dure. 'fhe effect of H4'0 on the ground-state wave function is fundamentally

small of the order G
2d ’ One may take the quantity*

(21)

as a measure of the accuracy of the approximation. The definition may 
be less suitable in cases where the level density of single-particle states 
is very different above and below the Fermi surface. It is quite satisfactory 
for our purposes as the single-particle levels are rather evenly distributed 
in the cases treated here.

It should be noted at this point that the neglected term in (14) is also 

small of just this order -
G
2'

The ground state Vy0 of an even-even nucleus, given by (11), thus de
fines the quasi-particle vacuum; it will be denoted |0» in the following 
and is characterized by the condition

= 1° » = °- (22)

We now turn to the ground state of an odd-A nucleide. fhe odd particle 
here occupies, say, the orbital ev-. This particle is entirely unaffected by 
the pairing force, which only scatters pairs of particles. The trial function 
of the ground state of such an odd-particle system is obviously

V/odd = (uv +
v + v'

Now uv and i>v are still given by eqs. (15), but the sums over states in eqs. 
(13) and (18), which determine A and 2, now exclude the “blocked” v’ 
state; furthermore, n in (13) has to be replaced by (n —1).

The effect on 2 is a trivial one; if v' lies near the Fermi surface (as it must 
for the ground state of an odd system), 2 is not appreciably changed with 
respect to the “even” case of n/2 pairs. As -Qet{ terms in fact contribute to (18), 

the exclusion of one term appears again to imply an error of the order , the

* The formula (21) gives values of ^eff about 5-10 for the actual calculations we have per
formed.
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fundamental inaccuracy of the BCS-solution. If we neglect this blocking 
effect for the moment, we end up with the same uv and vv as in the “even” 
cases. Therefore we still have the same quasi-particle vacuum, and we may 
write lJJ0dd in a form identical with (23):

= <,|() ». (23')

The additional energy of this one-quasi-particle state compared with the 
vacuum state (the “even” case of n/2 pairs) is most easily obtained from

Hn = X x (£v - ( uv - l%) + 2 uv dv - G v2 (u2 - v2) ) (a*  ar + ß+ ßv). (24)

* i. e. a system described by eq. (11) treated formally as if n were an even number.
** A comparison with the results of an exact diagonalization performed for a particular 

case of six levels and three pairs (corresponding to a 20 x 20 matrix) clearly bears out this con
tention.

*** This effect has also been studied recently by Soloviev^8).

V

The last term in (24) is small, again compared with the

sum of the first two terms, and often much smaller because of the factor 
(Up — v2). The neglect of this term thus amounts to an approximation of the
same order a
relation

s that due to the neglect of etc. We then arrive at the simple

H'n - Ev (xv av + ßv ßv) ■ (24')
V

The odd-even mass difference, which we have here defined as the dif
ference in mass between an odd-system and the “even” system*  having 
71/2 pairs and thus no orbital blocked, in this approximation simply equals 
Ev. This quantity is in turn very near to A for flic ground state of the odd-n 
system, as (ev - E)2 is very small compared with A2 (usually of the order 
of a few per cent).

The spectrum of excited states of an odd-A nucleus is given in this 
approximation by the quasi-particle energies Ev. As the single-particle level 
density is of the order of one state per 300 keV on the average, compared 
with an average A of between 500 and 1000 keV, this would lead to a level 
density in odd-A nuclei of the order of one state per 50-100 keV for exci
tation energies smaller than A, which is contrary to experience(16). It appears

Q
that of the approximations made, involving terms of the order of ~ the 

neglect of the blocking effects described on page 10 may be the most se
rious**,  ***.
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One may estimate the change in A between the even and the odd case 
due to the blocking of one level by the odd particle as*

jodd ~ je (25)

In obtaining this formula we have neglected terms of the type (ev - Å) E^n
V

as being small compared with A E~n. As is obvious from (25), the difference
v y- i J

(Ae - Aodd) depends somewhat on the cut-off of the sum over v in 5 —= 
EyV

The change in A, leading to a change in uv and also for v + v , also 
affects the odd-even mass difference. If one makes the same approximations 
as in deriving (25), one obtains for the odd-even mass difference P the 
expression

In deriving (26) we have included the “self-energy” terms from (16). They 
give as a result the third term in (26). While the neglect of these terms leads 
to the relation PyAe to first order inôA, the inclusion of these and of terms of 
higher order results in a P smaller than Ae by a magnitude of the order of 10 °/o 
in the present cases (see table II). The results of table II correspond to an 
exact inclusion of the blocking effect, but are generally in line with eq. (26).**

Of interest to us here are finally the lowest excited states in an even-even 
nucleus, which correspond to the excitations of two quasi-particles. Take 
as an example a state reached from the ground state by the jx operator 
considered in section III. Such a state is e. g.

= 71 (uv + vvajatv)\0>. (27)
V + v', v"

* On account of the rapid convergence of the sum in eq. (25) the choice of the cut-off energies 
Å±D is not very critical provided D))zf. Assuming a constant level density q and furthermore 
zl )) —, one obtains the estimate Aodd ~ Ae----- . The actual calculations, in which the

Q 2 Q
“blocking” effects have been included exactly, indicate a difference in A between systems with 
even and odd numbers of particles of the order of 20 °/0, as exhibited in table II. These results 
are roughly in agreement with eq. (25) and the estimate above.

** The arbitrariness in the choice of the cut-off energy enters (26) through the relation 
between G and A, which depends more critically on the cut-off energy than does eq. (25). 
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In the approximation implied by this equation (where, for v + v' v", uv and vv 
are the same as in the no-quasi-particle ground state) the excitation energy 
is given simply by application of H'rl as

^V'^-  ̂= EV. + EV^> 2z1. (28)

As the reduction in the effective A, i.e. in the diffuseness of the Fermi surface, 
is considerable in this two-quasi-particle state, owing to the blocking of two 
levels, one might be tempted to correct for this error in line with what is 
done above for the one-quasi-particle state, and write as an alternative to 
eq.(27)*

TI („;rr') + iy<)<4a^)|0>, (27')
v + v', v”

where and are thus calculated from (14) with two single
particle levels blocked. The excitation energy of this state (27') must be 
calculated via the total energies (16) obtained from variational calculations 
applied to the excited state, respectively to the ground state. It is obvious 
that a quasi-particle description has no advantage if one wants to include 
the effects of blocking, as we should then be forced to assume a vacuum for 
the excited state different from that of the ground state.

III. General Formula for the Moment of Inertia and the 
Collective Gyromagnetic Ratio in Terms of the Quasi-Particle 

Formalism

A derivation of the formula for the moment of inertia based on the 
cranking approximation has already been given in the quasi-particle for
mulation by Belyaev(6\ The exposition of ref. 6 appears not explicitly to 
include the case of the single-particle angular-momentum component being 
equal to 1/2. Although the explicit inclusion of this case only amounts to a 
minor modification, we shall repeat the general lines of the derivation.

We first express jx, the operator associated with the rotation of the field 
of an individual particle, in terms of creation and annihilation operators a+ 
and a. By the indices v, v' we denote combinations of states for which Kv

It is easily verified that this state is orthogonal to the ground state. 
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and Kv> do not both equal 1/2. The indices /<, // are then reserved for com
binations of orbitals that both have K = 1/2.

JXP = S {<v\Jx I > (lv(lv’ 
vv'

+ atva_v> } + y

+ <-/<

(29)

Employing the phase convention implied by eq. (4), one can readily prove 
the relations

< v I jx > = -<-v \jx\ -v) (30)
a nd

<P\jx\-E> = <-f{\Jx\l“>- (31)

To prove (30) one may for instance use the fact that the time reflection 
operator T is a product of a unitary operator and the complex conjugation 
operator, to obtain

<>IÀI ^ > = < I TjxT-11 Tv' >*.  (32)

To arrive at (30) one has then only to employ the facts a) that jx is a Her
mitian operator, b) that it changes sign under time reversal. To derive eq. (31 ) 
one must in addition use the fact that the matrix elements of jx are real in 
the representation employed here.

The next step is to transform eq. (29) by the canonical transformations 
(19 a, b), using (30) and (31). We may then write

Jx (.//r)ll d" (7/1)20 > (33)

where (ja.)11 thus first destroys and then creates a quasi-particle. It can there
fore have no matrix elements with the ground state of an even-even nucleus, 
which is just the quasi-particle vacuum. On the other hand, (7^)20 creates 
a two-quasi-particle state from the quasi-particle vacuum |0»:

7°P I 9 » = y < V \jx I v' > (uri>r, - uv Uv.) 0$ ß^ I 0 » 
w'

+ \Jx I - h > ("fi »p- - »fi Ufr) I («J' + ß^ßp') 10».
fifi’ -

Now the two-quasi-particle states a£ß£|0» and a^/^IO» both corre
spond to an excitation energy Ev + Ev>, measured with respect to the energy 
of the quasi-particle vacuum. These two states differ in their sign of the
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angular-momentum component. Similarly, aJ'aJI°» and ß+ßj, |()>> both 
have the energy E^ + E^, but have K = 1 and -1 respectively. Thus the 
contributions from these transitions do not interfere. Although in eq. (34) 
the v - and // - sums do not at first glance appear quite symmetrical with 
respect to one another, their contributions to the moment of inertia are quite 
analogous. We finally obtain the following formula for the moment of inertia :

1/2).

(35)

Indeed the second term can be formally included in the first, provided one 
remembers to take also the matrix elements between K = 1/2 and K' = - 1/2 
into account. Really there is no asymmetry between the v and // terms, as 
to every <v| | v'> transition there corresponds a < -v | jx\ - v' > transition,
of which only the first is counted formally in (35); further, to every <//1 | - ^'>
transition counted in (35) there corresponds a ( — //1 jx | ft' > transition which 
is not written out explicitly in (35).

The collective rotation takes place perpendicularly to the nuclear sym
metry axis and is associated with the collective angular momentum R. In 
an odd-A nucleus R couples with the angular-momentum component K of 
the odd particle to form the total angular momentum I, the nuclear spin. 
On the other hand, in the ground state of an even-even nucleus we have 
simply R = I. The collective flow of protons and neutrons building up the R 
also gives rise to an instantaneous magnetic moment associated with the 
operator

Jeon = =2? (stâ + dï k)> <36)
I i

where the sum runs over the paired nucleons. One may express this mag
netic moment in terms of a collective gyromagnetic ratio gR defined by the 
relation

/“coil —Ô'r^- (37)

(The definition is of course limited to matrix elements of the operator /zcoll 
that are diagonal with respect to the intrinsic nuclear wave function.)

In the cranking approximation the gyromagnetic ratio gR takes the 
form(2)
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Å2 \ "'<øal^|ø^><ø/?|./Jøa>
911 ~ ty /

\5 ß £ß £a
(38)

where Jx = 2^jx i-s the angular-momentum operator associated with thero- 
i

tation. As fix transforms under time reflection in the same way as jx, the 
inclusion of the pair-correlation interaction is completely analogous to the 
procedure employed on pp. 13-15. We just give the final expression

where

V-7 </<IsxI -/> (-/IA I //>

(39)

(40)

Thus, apart from the spin contributions (given by the last two terms of (39)) 
to the magnetic moment of the collective flow, gR is just the relative fraction 
contributed by the protons to the moment of inertia or, in other words, the 
effective charge of the collective flow. Of the last two terms of (39), Wp 
is the sum over all proton states and Wn the sum over all neutron states of 
the expression (40). The contribution from the terms containing W is small 
and is largely cancelled, as (g^-1) is very nearly of the same magnitude 
as g™ and of opposite sign.

It has already been pointed out that the quasi-particle description used 

here involves the neglect of terms of the order G
2d at various stages. The

errors connected with the neglect of H'w for the ground state and with the 
neglect of H4'o, and in calculating the excited two-quasi-particle 
states enter in a fundamental way, and they are also the errors that it is 
most difficult to correct for. On the other hand, the errors associated with 
the blocking effects may, in many respects, be the most severe. We have 
therefore attempted a programme taking this blocking fully into account 
through the use of (27') instead of (27) as the form of the two-quasi-particle 
state. Including the said corrections, one obtains the following expression 
for the even-even moment of inertia :
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^)u^0) +v )p^0))2 + (terms involving p,' and /z").
V + v'v"

(35')

In this formula the superscript 0 refers to the ground state, while the super
scripts v' and v" refer to the states in which the single-particle orbitals v' 
and v" are blocked.

The modification of eq. (40) is completely analogous to that of (35).

IV. Numerical Calculations of the Moment of Inertia and the 
Collective Gyromagnetic Ratio

a. Energy scale of the single-particle energies ev and determination 
of the deformation Ô

The relative order of the single-particle energies is probably rather well 
represented by the calculations of ref. 15. A minor readjustment of the 
energy differences within a shell, as may be suggested by the analysis of 
experimental nuclear spectra by Mottelson end Nilsson*16), does not very 
significantly affect either 3 or 9r °f an even-even nucleus. Even though the 
level order is fairly well established, the total energy scale 7ico0 is determined 
from a condition on the extension of the nuclear matter which is somewhat 
arbitrarily formulated(15) as 5/3<r2> = Rq, where, furthermore, the nuclear 
radius Ro has been set equal to 1.2 x A1'3 fermis. This then corresponds to 
choosing ho>0 = 41 xA_1/3 MeV. As the uncertainty of Ro must be regarded 
as being, say, of the order of 10 °/o, the inaccuracy of hco0 is probably 
larger than 20 °/o- Now the scale /io0 enters first of all in the energy denom
inator, so from this effect alone there appears at first glance to be an un

certainty in 3 of, say, 20 °/o- However, the ratio -—-, which determines na>o
the u and v values, obviously decreases when hœ0 is increased, and vice 
versa. This effect largely cancels the first effect. Indeed, as seen from figs. 22 
and 23, a lO°/o decrease of ha>0 results in a net change of 3 by only ±2 °/o 
or less in the range of parameters used in these calculations.

Furthermore, the single-particle energy parameters ev are also connected 
with the eccentricity parameter ô. Indeed, for the use of the energy diagram 
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of ref. 15 it is necessary to know <5. To obtain values of 5 we have employed 
the empirical values of the quadrupole moments as determined from Cou
lomb-excitation data. We have made use of the measurements and com
pilations*  of Qo recently made by Elbek et al.<19) in the mass region 150 <A< 
190 (often denoted region I in the following) and by Bell et al.(20) in the 
region A>220 (region II). The experimental values of the quadrupole mo
ments in region I exhibit an estimated accuracy of the order of 3 °/o com
pared with one another(19). The absolute uncertainty may be greater, how
ever. In particular the values of Elbek et al. appear systematically to be 
a few per cent lower on the average than those of most other authors, as 
pointed out in ref. 19.

Assuming a homogeneous charge distribution, one obtains the well-known 
relation between the intrinsic quadrupole moment and ô

Q0-ïôZ^(l+i«+... j. («)

flic main uncertainly connected with the use of this formula probably lies 
in the specification of the parameter Rz. We have, in using formula (41), 
put Rz equal to the average nuclear radius 7?0, which, as pointed out, is 
related to the energy scale ha>0. Also the analysis by Ravenhall(21) of elec
tron scattering data indicates a proton charge distribution such that the 
charge radius Rz defined as [5/3<r2>]1/2 equals about 1.2xA1/3 fermis.

It turns out that <5 is a most critical parameter in the calculation of the 
moments of inertia. The very large uncertainty in its determination is thus 
due mostly to the inaccurate knowledge of Rz, furthermore to the experimen
tal inaccuracies in the ()0 determination, and finally to the approximate 
assumptions underlying formula (41). Indeed, as the nucleonic wave func
tions are known in the pairing approximation, they may be used to calculate 
an expectation value of the quadrupole operator. For the quasi-particle 
vacuum, one obtains the simple relation(6)

(42) 
V

where

As the population numbers of the single-particle states as well as c/9r 
are functions of Ô, eq. (42) provides a relation between Qo and Ô in which,

* We are grateful to the authors cited for access to their values in advance of publication. 
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however, ha>0 (and thereby 7?0) enters as a parameter. Formula (42) should 
be considered somewhat of an improvement on (41). However, the pre
liminary calculations by Szymanski and Bes(22\ until now limited to region 
I, indicate that the approximation (41) is accurate to within a few per cent 
in the entire region. This corresponds to a matter distribution displaying 
approximately the same eccentricity as the potential shape.

Szymanski and BÉs go further to seek the equilibrium deformations heq. 
Using the relation (42), they then compare the magnitude and trend of the 
calculated Qo corresponding to <5eq with the empirical Q0-values. The pre
liminary results indicate deviations from the experimental values of the 
order of 20 °/o.

As pointed out, the use of formula (42) instead of (41) does not remove 
the uncertainty in the specification of the nuclear charge radius. The ô 
obtained from equilibrium calculations appears rather sensitive to details 
of the model, and therefore uncertain.

b. The gap parameters An and zl

The moment of inertia is very sensitive to the choice of An and Ap, 
the energy-gap parameters of neutrons and protrons. Thus a 10 °/o increase 
in the magnitude of An and Ap results in an average decrease in 3 °f the 
order of magnitude of 10 °/0 (cf. ligs. 20 and 21).

Now, An and Ap are determined from the average pair-correlation matrix 
elements Gn and Gp and the single-particle level density. The exact relation 
is given by eq. (18). A separate and independent treatment of neutrons and 
protons, which we have implied here, appears to be adequate in the two 
regions of deformed nuclei to which the calculations have been conlined, 
as neutrons and protons fill different shells. The assumption that the pairing 
matrix element can always be set equal to a constant, G, is of course also 
approximate. Indeed, as the single-particle states on the average become 
less and less similar as they get more distant from one another in energy, 
it appears that the overlap of two such wave functions should on the average 
decrease with increasing energy difference. The contribution from the states 
far below and above the Fermi surface to the sum in (18) is thus effectively 
limited. This we may approximately simulate by including in the sums only 
a certain number of states nearest above and nearest below the Fermi sur
face. The effect of the arbitrariness in the choice of a cut-off point is less 
severe as outside of a certain region the inclusion of some extra terms beyond 

2*  
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the cut-offs in many respects corresponds only to a renormalization of G 
(cf. refs. 5 and 6)*.

In our calculations we have included all states of the iV = 3, 4, 5 shells 
(N is the total number of oscillator quanta) for protons in region I (56 levels). 
Furthermore, we have taken into account all states of the N = 4, 5, 6 shells 
for protons in region 11 and neutrons in region I (64 levels), and finally all 
states of the shells N = 5, 6, 7 (85 levels) for the neutrons in region II. 
Compared with an earlier calculation in which only altogether 20 levels 
near the Fermi surface were taken into account, the inclusion of this great 
number of levels implied an increase in 3 by an amount of the order of 
10 °/o for nuclei at the beginning and the end of region I, provided and 
Ap were kept the same in the two calculations. In the middle of region I 
the effect was even smaller. On the other hand, to obtain the same d-value 
in the two cases we had to use G-values 30-50 °/o larger in the calculation 
in which the fewer levels were taken into account.

Kisslinger and Sorenson(23) have analysed systematically sequences of 
isotopes and isotones of single-closed-shell nuclei, such as the Pb and Sn 
isotopes, in terms of the known shell-model states with the inclusion of the 
pair-correlation interaction and a long-range P -force. They conclude that 
the strength of the pair correlation that best fits the data corresponds to

const . ,
G = —-— with A GxA = 17-28 MeV when they lake single-particle levels of

one shell into account. They do not explicitly point out any systematic dif
ference between the G x A values for neutrons and protons. Similar cal
culations by Bro-Jørgensen and Haatuft(23£1) in progress, treating nuclei 
that exhibit low-lying vibrational states, also indicate that the values of G x A 
that best reproduce the experimental material lie between 20 and 25 MeV. 
Szymanski and Bes(22), taking always the 24 levels nearest to the Fermi 
surface into account, give GpxA~ 32, GnxA~ 25.5. Previously Mottel- 
son(3) had suggested a value of G x A ~ 25-30 MeV, based on an analysis 
of nucleon-nucleon scattering data.

In the present calculations we have first attempted to obtain a direct 
estimate of the energy-gap parameters An and Ap, based on empirical 
evidence other than the rotational-band spacing. We have then studied how 
well one value of Gn x A and one value of Gp x A can reproduce the empirical 
An and Ap values in both regions. The result of this analysis (cf. figs. 7-14) 
is discussed below.

* On examination of the effects of “blocking” it appears that the choice of the cut-off limits 
is much more critical e. g. in the determination of the odd-even mass difference (see section II).
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Table I. Parameters Defining the Single-Particle Level Spectrum Employed 
in the Calculations.

N: S. G. Nilsson [1955] ,ref. 15
MN: B. Mottelson and S. G. Nilsson [1958], ref. 16 
* : S. G. Nilsson, unpublished calculations.

Re
gion

Treated 
shells X

Ener
gies 

to be 
found 
in re

ference :

Additional shifts in units of ftco0 
(in line with reference MN)

Case A Case B Case C

N = 3 0.05 0.45 N _ _
Protons 4 0.05 0.55 N — — The same as

I

62<Z<74 5 0.05 0.55 * (h 11/2: — 0.075 
pothers: +0.1

(—0.075 case A (plus 
some very small

N = 4 0.05 0.45 N — — shifts of a few
Neutrons 5 0.05 0.45 N — — individual

90 < A< 112 6 0.05 0.45 N Ji 13/2: unchgd. 
pothers: +0.15

f
1

levels)

N = 4 0.05 0.55 N —0.38 — 0.15 -0.20 =
Protons 5 0.05 0.70 MN h 11/2: —0.2 — -0.05 £ >

II

Z>88 6 0.05 0.45 N fi 13/2: —0.35
1 others: unchgd.

J—0.35
1 -

z ' ! *-0.35i h

N = 5 0.05 0.45 N — 0.38 0.15 -0.225 £ « -
Neutrons 6 0.05 0.45 N i 13/2: —0.23 — -0.075 £ *5  £
N> 138 7 0.05 0.40 MN fj 15/2: —0.06 

(others: unchgd.
(—0.06
1

J-0.06 § g -2
I S 1

Regions I and II refer to the so-called rare-earth region (150<A<190) and the actinide 
region (A > 220) of elements respectively. The parameters k and g of columns four and five are 
defined in ref. 15. Note that we have employed only one x-value (x = 0.05). A few ad hoc changes 
have been made in the level scheme obtained on the basis of the parameters listed. These are 
indicated in columns seven, eight and nine for the cases A, B and C, which are discussed in the 
text. Case C should correspond to the level scheme that is in best agreement with the empirical 
data on level spectra of odd-A nuclei (cf. ref. 16).

When searching for empirical information from which estimates of An 
and Ap may be obtained, one first thinks of the empirical energy gap in the 
excitation spectra of even-even nuclei and of the odd-even mass differences. 
As pointed out on p. 13, the quasi-particle description gives an energy gap 
>2/1, where zl is the smaller of Ap and An. Indeed, the gap should be very 
nearly ecjual to 2d, as pointed out in section 2. In region I the lowest ex
cited states clearly identified as two-quasi-particle states occur in Ilf178 and 
Hl'180 at about 1150 keV, in Er168 at about 1100 keV, in Dy162 at about 
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1450 keV, and in (id156 at about 1500 keV. One would, however, be inclined to 
regard the empirical identification of such lowest-lying states merely as selting 
a lower limit on 2d. The neglected additional interactions, as for instance the 
fluctuating part of the long-range P2-force which is not already included in the 
spheroidal field, would split apart the two-quasi-particle states lying very 
densely just above the energy gap. Furthermore, the inclusion of the H22 term 
of would tend to pull some of these slates down below 2d. An estimate of 
the magnitude of the depression due to this term is rather difficult as a large 
part of its effect is spurious (see Appendix I) and related to the fluctuations in 
the number of particles introduced by the BCS wave function. A somewhat 
better measure of the energy gap is probably provided by spectra in which 
a great number of higher-lying two-quasi-particle states are identified, as 
is the case in W182. Here the level density becomes very high at ~ 1400 keV, 
which seems to indicate a gap of such magnitude for this nucleus*.  Finally 
there are also the effects associated with the effective reduction of d in the 
two-quasi-particle case due to “blocking”, as discussed in section 2.

Thus a more detailed experimental study of even-even spectra above 
one MeV would be very informative. In particular one should be able to 
see whether the lowest-lying two-quasi-particle excitations correspond to 
broken neutron rather than broken proton pairs, as the evidence from mass 
differences suggests**.

Probably the best available information on the gap parameters can be 
obtained from the study of even-odd mass differences. The mass measure
ments by Johnson and Bhanot(25) are the main source of empirical knowl
edge in region I, while the extensive compilation, based on many empirical 
sources including beta and alpha systematics, by Foreman and Searorg(26) 
covers region II. We have also exploited systematics of beta-decay energies 
in region I, where more extensive binding-energy data are available for 
neutrons only.

The total binding energies of, for instance, a series of isotopes having 
an even value of Z, exhibit a smooth variation with TV for all even-even 
nucleides and a parallel smooth variation with TV for the odd ones. 
According to the present theory, the displacement should correspond to the 
quasi-particle energy of the last nucleon.

Consider first the neutrons. We have defined the empirical odd-even 
mass difference Pn by the formula***

* We are grateful to Professor B. R. Mottf.lson for an enlightening discussion of this point.
** Indeed a recent analysis by C. Gallagher!24) of beta-decays populating higher-lying 

states of even-A nuclei in region I appears to lend support to this supposition.
*** This quantity would more correctly be labelled Pn (Z, N—1/2).
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Fig. 1. The odd-even mass difference parameter Pn for neutrons in region I (150 < A < 188). The 
squares refer to mass-spectroscopic measurements by Johnson and Bhanot(2S\ while the circles 
refer to beta-decay energy data. The dashed curve represents averaged values used in the moment 

-of- inertia calculation.
Added in proof: Recently published more complete mass-spectroscopic measurements by Bhanot, 
Johnson and Nier(30) give 100-200 keV lower P -values in the region N = 108-112; see further

more flg. 28.

Pn(Z, A’) = -E(Z, .V+1) ; 3E(Z, .V)-3Z:(Z, N-1) + E(Z, N-2)}

= | { - Sn (Z, N + 1) + 2 Sn (Z, N) - Sn (Z, N - 1 ) },
(44)

where the neutron separation energy Sn(Z, N) is related to the total binding 
energies E(Z, N) by the formula

Sn(Z,N) = E(Z,N)-E(Z,N-l). (45)

Analogous relations hold for the proton binding energy. Eq. (44) thus cor
rects for a second-order A^-dcpendence of the mass valley. In fig. 2 of the 
present paper the values of Pn have been extracted from Foreman and 
Seaborg’s binding energies by means of eq. (44). This figure may be com
pared with fig. 3 of ref. 27, where the same data have been exploited, but 
the following relation has been used :
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Fig. 2. The odd-even mass difference parameter Pn for nuclei in region II (A > 224). The circles 
correspond to data collected by Foreman and Seaborg<26>. The dashed curve represents the 

smoothed-out values of Pn on which the calculations were based.

(Z. V) - i (S.(Z, A') - S.(Z, V- 1 )}, (44-)

which allows only for a first-order N-dependence of the masses. The use 
of (44) appears to give smaller fluctuations. In region I, where the data 
are meagre, the difference between (44) and (44') also appears significant. 
The values of Pn derived from (44) turn out usually 50-100 keV higher 
than those obtained by the use of eq. (44').

In region I, as already pointed out, the beta-decay energy systematics 
are a valuable complementary source of information. From a comparison 
of sequences of odd isobars connected by beta decay or electron capture 
one obtains an estimate of ÇPp-Pn), as an odd-Z isobar corresponds to 
a proton quasi-particle state and an odd-V nucleide to a neutron quasi
particle state. In addition to using beta-decay energies from isobars it turns 
out to be advantageous to study also elements having (N - Z) = constant 
(isodiaspheres(28)) or (3N-Z) = constant. Indeed, one could employ any 
systematic cut through the mass valley other than those mentioned. For iso
bars, usually only a few energy differences are known. In particular, electron 
capture energies are very uncertain; furthermore the elements soon get very 
shortlived as one moves away from the stability minimum. Contrary to iso-
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Fig. 3. The odd-even mass difference parameter Pp for nuclei in region JI. For further explanation 
see flg. 2.

bars, which correspond to lines of elements almost perpendicular to the 
direction of the mass valley, isodiaspheres, as well as elements corresponding 
to (32V—Z) = constant, represent cuts exhibiting a small inclination to the 
direction of the valley. Such lines thus contain many more studied nucleides. 
On the other hand, for instance isodiaspheres also correspond to an aver
aging over a larger region of elements.

A collection of such available data on (Pp —Pn), mostly taken from 
Nuclear Data Sheets(29) and ref. 16, is given in fig. 4. The diagram shows 
clearly that Pp is rather consistently much greater than Pn in region I. This 
is also the case in region II, where the evidence is more complete (cf. figs. 2 
and 3). The difference is of the order of 100 keV in region I and about 
150-200 keV in region II. Fig. 4 also indicates a trend in the value of (Pp - Pn) 
from 0-50 keV around A = 155 up to 150-200 keV around A = 175, and 
then a decline towards zero again beyond A = 180. However, it must be 
borne in mind that the uncertainty of these energy differences is probably 
more than 50 keV. If the mass valley were exactly parabolic in shape, the 
beta energies would lie on straight lines. There is, however, a systematic 
curvature, especially conspicuous for isodiaspheres, which we have in some
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Fig. 4. The difference Pp~Pn f°r nuclei in region I from beta-decay energy systematics. The circles 
correspond to cuts through the mass valley characterized by (N—Z) being constant (isodia- 
spheres), the triangles to series of isobars, and the squares to series of elements with (3.V—Z) 
equal to a constant. Uncertainties associated with the points are of the order of 50-100 keV.

166 168 170 172 174 176 178 180 1

measure taken into account graphically by drawing smooth curves through 
the points. This deviation corresponds to a higher-order (tV—Z)-dependence 
of the mass-valley*.

Furthermore, a study of beta decay energies of even-A nucleides gives 
a measure of (Pp + Pn). However, a study of the available wealth of mass 
data in region II indicates clearly that there is an additional coupling ener- 
gy(27,28) j)etween pie 0(pi neutron and the odd proton that makes the mass 
difference between the odd-odd and even-even nuclei smaller than Pp + Pn. 
We define such an empirical coupling energy Pnp as

* The somewhat astonishing conclusion that empirically P is greater than Pn is suggested 
already by the fact that of the stable odd-A elements the odd-N nucleides are more numerous 
than the odd-Z ones in the mass regions of interest here. For instance, among the elements 
A = 153, 155, . . ., 185 there are 10 odd-N nucleides and seven odd-Z ones. If we assume the 
distribution of masses to lie on the parabolic surfaces 

where 1 = N—Z, the probability of the odd-N nucleide being stable is apparently

For the elements mentioned above one then obtains the estimate (Pp-Pn)~100 keV as an 
average for the whole region.
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Fig. 5. Coupling energies Rnp between the odd proton and the odd neutron in odd-odd nuclei. The 
experimental binding energies of series of nucleides, as given in ref. 26, are exploited by means 
of eq. (46) of the present article for a determination of Rnp. The uncertainty in the obtained 
values of R is at least of the order of 50 keV. The squares in fig. 5 correspond to parti- np

cularly uncertain points.

flw(Z,V)-l{ [-Sn(Z+l,N) + 2S„(Z,X)-S„(Z-l,V)] (<6)

+ [ - Sp (Z, V + 1 ) + 2 .Sp (Z, V)-S„(Z,N-I)]},

where (Z, N) refers to the odd-odd nucleus. Values of Knp are collected 
in fig. 5. As expected, there are great fluctuations (to some extent probably 
indicating a difference between the overlaps of the neutron and proton or
bitals in the different cases). However, Rnp appears to be greater than zero 
in almost all the cases. On the inclusion of the data from other regions of 
elements, as collected e. g. in ref. 28, one might conclude that, on an average,

7? ~±vnp —
20-30 .rMeV A

(47)

This correction has been employed in region 1 in obtaining the values of 
Pp + Pn from beta-decay systematics. The corrected energies have then been 
used together with the smoothed-out (Pp — Pn')-values of fig. 4 in obtaining 
the Pre-values exhibited in fig. 1.
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MeV
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Fig. 6. Average empirical values of the proton odd-even mass difference parameter Pp in region I 
used in the calculations. This dashed curve is obtained by addition of the smoothed-out (P -PA- 

function of fig. 4 to the averaged PM-values of fig. 1.
Note added in proof: The recent mass-spectroscopic measurements by Bhanot, Johnson and 
Nier(30) allow more accurate P -values as displayed in fig. 29. The deviation from fig. 6 is 

notable only for A > 180.

The main problem now concerns the relation between P and A. 11 has 
already been discussed in some detail in section 2, where it is pointed out 
that, if one assumes the same quasi-particle vacuum for the odd and the 
even case, this leads to P = A. The results of a calculation that allows for 
the fact that the odd particle blocks the scattering of the pairs by its presence 
and thereby changes the occupation numbers also of the other single-particle 
levels, are exhibited in table II. This calculation gives the result that P 
is smaller than A by a magnitude of the order of 10 °/o on the average, both 
for neutrons and protons. The relation between P and z1 is unfortunately very 
uncertain as, first, the correction is somewhat dependent on the cut-off, sec
ondly, an important contribution comes from the “self-energy” term displayed 

in eq. (26), thirdly, still other effects of the order are neglected, some 

of which are discussed in Appendix I. In the calculations presented in this 
article we have simply started from the assumption An = P®xp and Ap = /J®xp 
(or rather some smoothed-out experimental values of P®xp and P®xp).

Smoothed-out A-dependence of "experimental’P

A
152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188
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Fig. 7. The relation between values of /I and Gn in region I obtained in the calculations. For de
tails of the single-particle spectrum employed, denoted as “case A”, see table I. The points 

exhibited for comparison refer to the Pn-values of fig. 1.

In figs. 7-10 and 11-14 we have compared the values of An and 
obtained in the detailed calculations corresponding to constant values of 
Gn and Gp with the empirically given values of Pn and Pp. It is found that 
values of Gn x A ~ 18 MeV and Gp x A ~ 25-26 MeV both in region I and II 
and for a given set of ev:s, denoted case A, reproduce rather well the “em
pirical” trends. For an alternative set of £v:s, denoted case B, we lind in
stead that x A ~ 16-17 MeV and Gn x A ~ 23 MeV give the best fit. It 
seems plausible that case A represents rather well the situation in region I, 
while region II is presumably better described by a set of ev:s intermediate 
between case A and case B and probably closest to case B (cf. case C of 
table I). Still the similarity of the G-values used in the two regions appears 
encouraging*.

* One might also point out in connection with figs. 7-14 that the illustrated relation be- 
1

tween G and A appears to be described rather well by the expression A ~ e Q®, where p is the 
single-particle level density. The conditions for this relation to hold are that the level density 
is roughly constant, that there is approximately the same number of levels above and below 
the Fermi surface, that pG«l, and furthermore that A ))d, which is implied by the replace
ment of sums by integrals in obtaining the expression above (d is the magnitude of the cut-off 
energy above and below the Fermi surface).
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Table II. The Odd-Even Mass Difference Parameter P when the Effect of 
Blocking due to the Odd Particle is Included, Referring to Odd-N Nuclei in 
Region I (Table Ila) and Region II (Table lie) and to Odd-Z Nuclei in 

Region I (Table lib) and Region II (Table I Id).

Table Ila

Nucleide

(MeV) (keV)

j odd

(keV)

ptheor.

(keV)

Ae_ptheor.
ZJn 1 n

pexp 
n

(keV)(7o) (7o)

17 1047 895 15 977 7
9*Gd 155 18 1215 1068 12 1122 8 1145

19 1396 1247 11 1294 7
17 958 796 17 868 9

93/^ j15764GC1 18 1122 960 14 1028 8 990
19 1303 1134 13 1232 5
17 895 744 17 874 2

95Dv161
66 «y 18 1050 887 16 1046 0 904

19 1231 1049 15 1276 —4
17 809 643 21 837 —3

I’Dy163 18 965 802 17 986 —3 846
19 1141 969 15 1150 —1
17 711 516 27 618 13

HEr167 18 859 677 21 730 15 787
19 1030 846 18 903 12
18 783 557 29 733 6

lOlyi 171
70 1 ° 19 946 732 23 881 7 732

20 1121 914 18 1048 7
18 699 397 43 531 24

103y v. 173
70 1 U 19 869 604 30 736 15 684

20 1049 811 23 926 12
18 677 374 45 503 26

105t Tfl77
72111 19 845 581 31 704 17 659

20 1022 786 23 892 13
18 677 375 45 488 28

19’Hf179 19 846 585 31 701 17 690
20 1021 790 23 893 13
18 733 529 28 700 5

109-y^T83 19 883 692 22 849 4 788
20 1040 858 18 997 4
18 686 452 34 613 11

109x17183
74 19 839 623 26 785 6 788

(1-1 <5) 20 997 796 20 945 5
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Table lib

Nucleide G xA 
P

(MeV) (keV)

a odd 
P 

(keV)

je.jOdd 
p P

ptheor.
V

(keV)

*e_ ptheor.
P

pexp 
P

(keV)
4 
c/.)

AP

(°/o)

24 1270 1041 18 1149 10
esEu153 25 1421 1185 17 1320 7 1309

26 1586 1337 16 1532 3
24 1098 854 22 982 11

65Tb159 25 1244 991 20 1157 7 1013
26 1409 1133 20 1399 1
24 985 713 28 834 15

67Ho185 25 1127 856 24 1001 11 925
26 1285 1000 22 1226 5
24 917 613 33 742 19

MTm“9 25 1060 771 27 918 13 883
26 1220 922 24 1151 6
24 883 644 27 821 7

,iLui’9 25 1025 770 25 1015 1 809
26 1208 895 26 1369 — 13
24 839 632 25 830 1

Ta18173 i a 25 951 733 23 945 1 869
26 1078 844 22 1100 — 2
25 822 496 40 715 13

75Re195 26 948 661 30 860 9 937
27 1090 815 25 1040 5
25 803 476 41 718 11

75Re187 26 923 638 31 854 7 961
27 1057 790 25 1012 4

Column one identifies the nucleide; column two lists the chosen G-values; columns three, 
four and five give the corresponding zl-values for the even and the odd case, and the relative 
difference in per cent. Column six shows the calculated P-value, which is compared with the 
corresponding Zl-value of the even case in column seven. The last column gives the averaged 
experimental P-value corresponding to the first diagrams of the present article. (Note that 
here the so-called “even” case corresponds to a nucleide having n/2 pairs and no single-particle 
state blocked.)

The result that Gp conics out considerably larger than Gn is in agreement 
with the fact that near the Fermi surface the velocity of the protons is smaller 
than that of the neutrons owing to the Coulomb repulsion. Now the S-wave 
phase shift, with which the pair-correlation force is directly associated, falls 
off rapidly with increasing relative energy because of the increasing im
portance of the repulsive core. This in turn follows from the fact that par
ticles of higher velocity may penetrate closer to each other*.

* The authors are indebted to Professor B. R. Mottelson for valuable comments on this point.
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Table ile

Nucleide GnxA 
(MeV) (keV)

jodd

(keV)

ptheor.

(keV)

a e _ ptheor.
1 n

pexp 
n

(keV)(°/o) (7o)

16 639 534 16 627 2
139Th229

90 1 17 781 666 15 746 4 777
18 935 810 13 909 3
16 587 410 30 504 14

141Th231
90 1 17 732 585 20 642 12 737

18 890 758 15 791 11
16 573 400 30 491 14

141t t233
92 U 17 714 570 20 625 12 687

18 869 738 15 777 11
16 532 351 34 438 18

143t j235
92U 17 669 519 22 568 15 639

18 825 687 17 723 12
16 488 311 36 397 19

145Pu239
94 17 615 464 25 514 16 561

18 767 620 19 680 11
17 576 416 28 473 18

147Pu241 18 725 573 21 626 14 543
19 927 734 21 976 — 5
17 529 351 34 440 17

‘>245 18 665 505 24 558 16 574
19 839 669 20 777 7

Table Ild

Nucleide Gpx A
(MeV)

P
(keV)

<dP 
(keV)

ae _ ^odd
'P 7'

ptheor. 
P

(keV)

^\e — ptheor.
Z P P

pexp 
p

(keV)
4

(°/o)

^P

(%)

22 846 713 16 782 8
91Pa231 23 949 814 14 887 7 896

24 1059 919 13 1008 5
22 742 593 20 676 9

93Np237 23 841 690 18 779 7 821
24 949 792 17 904 5
22 615 400 35 579 6

»Am»1 23 718 526 27 693 3 745
24 832 648 22 827 1
22 601 383 36 563 6

„Am“’ 23 702 508 28 676 4 745
24 813 630 23 802 1
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Fig. 8. The relation between and Gp in region I (case A). The “empirical” dashed curve refers 
to the averaged P curve of fig. 6.

Fig. 9. The relation between An and Gn in region II (case A). The exhibited points refer to the 
Pn-values of fig. 2.

Mat. Fys. Medd. Dan.Vid. Selsk. 32, no. 16. 3
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Fig. 10. The relation between Ap and Gp in region II (case A). The exhibited points refer to the 
Pp-values of fig. 3.

Fig. 11. The relation between An and Gn in region I as obtained in the calculations (case B). For 
details about the single-particle spectrum employed in these calculations, denoted as “case B”, 

see table I. The points exhibited for comparison refer to the revalues of fig. 1.
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Fig. 12. The relation betiveen Ap and Gp in region I (case B). The “empirical” dashed curve cor
responds to the Pp-values of fig. 6.

220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250

Fig. 13. The relation betu>een An and Gn in region II (case B). The exhibited points refer to the 
Pn-values given in fig. 2.

3*
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Ap

MeV

G- 22 MeV 
» A

0.250
Theoretical A p corresponding to 
Gp = -^- and-ÿ- MeV respectively 

(case B)

—s' Experimental Pp from <*■  and ß- systematics

0 000 220 222 224 226 228 230 232 234 236 238 240 242 24 4 246 248 250

A
Fig. 14. The relation between d and Gp in region II (case B). The exhibited points refer to the 

-values given in fig. 3.

V. Details of the Numerical Calculations

The numerical calculations were performed on the SMIL electronic digital 
computer of the University of Lund. In the first programme used*  the ev:s 
were stored in the computer for three different eccentricities, ô = 0.20, 0.25 
and 0.30, in region I and for ô = 0.20 and 0.25 in region IL Furthermore 
the computer was provided with a set of four different zln and Ap values, 
covering the whole region of variation of these parameters. For each value 
of Ô and A the computer was instructed to find the correct Z fulfilling the 
condition (13) for the sequence of given Z and Ar values of the elements 
of regions I and II. About 1000 different matrix elements of sx and were 
also stored, connecting all single-particle states up to and including the 
xV = 7 shell in terms of the wave functions of ref. 15 and computed for 
three, respectively two, different values of the eccentricity. When the u:s 
and u:s had been determined for each z, A and ô, SMIL went on to compute
X. wp, Gn, Gp, the total energy, the fluctuation in the number of
particles, etc. All this information was printed. A subroutine was then used

* The programme was constructed by Dr. C. E. Fröberg, Director of the Institute of 
Numerical Analysis of the University of Lund.
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to interpolate 3 an(l f°r specific values of ö and A, by means of all the 
points computed, and also to find the relation between Zl and G for the 
given eccentricities, as exhibited in figs. 7-14.

In a later programme designed also for the treatment of moments of 
inertia of odd-A nuclei (see Appendix III), where the correct position of 
the chemical potential with reference to the level populated by the odd 
particle is very critical, we employed a different procedure. According to 
this latter programme the interpolation between ev;s, stored in the memory 
for a few deformations, to the correct deformation is performed first.

VI. Results of the Calculations

a. Moments of inertia of even-even nuclei
'the values of the calculated moments of inertia of even-even nuclei, 

corresponding to the sets of single-particle states ev as given in table I (cases A 
and B), as well as to the eccentricities exhibited in figs. 15 and 16, and to 
the A-values equal to the P-values of figs. 1, 2, 3, and 6, are displayed in 
fig. 17 (region I) and in fig. 18 (region II). All the empirical and some of 
the calculated values are listed in table III, where the appropriate references 
of the former are also given. A correction to the empirical values for the 
rotation-vibration interaction is not employed for the plotted values of 
figs. 17-25. Information on this point is incomplete, but the effect is of 
some importance at the beginning of regions I and II, and its inclusion 
amounts to a depression in $of a few per cent, as can be studied in table III, 
thus very slightly improving the agreement with the theoretical calculations.

2
In region 1 the quantity in case A lies consistently ~ 10 MeV 1 below

the experimental values. The calculations corresponding to case B (which 
case implies that the ad hoc raise of the shells above Z = 82 and N = 126, 
assumed according to case A, is very largely diminished) give values of 3 
above those of case A, particularly at the end of the region. Nevertheless, 
the overall variation over the nueleides is probably less favourable than in 
case A. Furthermore, in case B the single-particle states of the above-lying 
shells are allowed to come down further than is tolerable on the basis of 
the detailed knowledge(16) about the odd-A nuclear excitation spectra at the 
end of region I. Thus case A appears more realistic*.

* The interest in including case B lies, however, apart from its giving an estimate of the 
effects of the inaccuracies of the single-particle level scheme, in the fact that fewer ad hoc changes 
in the single-particle spectra are made in that case. Such changes are dangerous as they lead 
to violations of the sum rules otherwise fulfilled by any consistent model.
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Fig. 15. Values of the eccentricity parameter ô in region 1 used in the calculations. The values of 
ô are obtained by means of eq. (41) from the quadrupole moments given by Elbek et. al.<10), 
assuming Rz = 1.2 /. Note that the dashed line ending at Yb178 represents a slight ad hoc

correction of the Yb178 point. Such a correction is in line with the level diagram of ref. 15.

222 224 226 228 230 232 234 236 238 240 242

Fig. 16. Values of the eccentricity parameter ô in region II used in the calculations. For references 
to the experimental data see Bell et al.<2°) and Strominger, Hollander and Seaborg<44) : 
The detailed fine structure of the A-dependence of <5 appears less regular than in fig. 15, and 

some of the variations may be due to experimental uncertainties.

In region II both the calculations, corresponding to case A and case B, 
give results very much below the empirical energy moments, particularly 
at the beginning of the region, even when the vibration-rotation correction 
for the empirical values is applied.

Unfortunately, however, both <5, and d;) are known too inaccurately 
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Table III. Experimental and Theoretical Values of the Moment of Inertia 
and the Collective Gyromagnetic Ratio in Region I (Table Illa) 

and Region II (Table Illb).

The nucleides are identified from columns one and two. Column three shows the experi
mental values of the moment of inertia based on the excitation energy of the first rotational 
states as found, e. g., in refs. 44 and 46. Column four gives the inertia values that include the 
correction for the rotation-vibration interaction. These values have been taken from ref. 45. 
Columns five, six and seven show the values of the parameters <5, and A assumed in the cal
culations. The values of (5 given in parentheses are extrapolated. Of the quantities listed in the 

o
last columns, the theoretical quantities 3 and W are defined from eqs. (AII-10) and (40). The 
indices n and p refer to neutrons and protons respectively. Columns 10 and 13 (respectively 14) 
give the final theoretical values of the moment of inertia and the collective gyromagnetic ratio. 
In table III a, columns 8-13 refer to “case A”, only column 14 to “case B”. For experimental 
values of gR see refs. 33 and 40.

Table Illa

(a) J. O. Rasmussen and K. S. Toth, Phys. Rev. 115, 150 (1959).
(b) from B. Elbek, unpublished.

Nucleide -3*2 ^exp

(MeV)-1

2 tvcorr 
jp. X’exp 

(MeV)-1
<5

Case A 9r

2 å
7*2

2 Å
ft»3?

2
ft»3

2 Case A Case BxIiwq x/i co0
A

Sm 152 49.2 47.3 0.254 3.254 3.502 22.98 13.20 38.9 0.619 0.327 0.341 0.344
154 73.2 0.289 2.720 3.329 33.67 16.41 53.9 0.951 0.436 0.295 0.299

Gd 154 48.8(a) 46.8 0.242 3.269 3.329 21.28 13.19 36.9 0.567 0.361 0.367 0.378
156 67.4 66.7 0.277 2.731 2.886 32.45 17.83 53.9 0.949 0.553 0.333 0.339
158 75.5 75.0 0.297 2.479 2.705 38.38 20.10 62.9 1.160 0.654 0.319 0.326
160 79.7 0.303 2.320 2.651 41.42 20.82 67.0 1.273 0.687 0.307 0.311

Dy 160 69.0(a) 68.5 0.263 2.489 2.651 34.18 17.98 55.5 1.064 0.584 0.318 0.325
162 74.4 74.0 0.277 2.330 2.574 38.54 19.09 61.6 1.208 0.634 0.311 0.310
164 81.8 0.287 2.176 2.501 41.09 19.99 65.4 1.183 0.677 0.304 0.309

Er 164 66.7 0.266 2.339 2.501 37.26 18.93 59.9 1.168 0.601 0.306 0.324
166 74.5 74.1 0.279 2.185 2.448 40.59 19.92 64.7 1.181 0.640 0.303 0.313
168 75.2 75.0 0.278 2.046 2.403 41.85 20.30 66.4 1.079 0.658 0.309 0.315
170 75.6 0.269 1.905 2.358 44.25 20.38 68.7 1.118 0.665 0.296 0.298

Yb 170 71.2 70.9 0.265 2.053 2.358 41.07 20.48 65.4 1.066 0.627 0.313 0.329
172 76.2 76.0 0.270 1.913 2.289 44.35 21.59 70.1 1.119 0.661 0.308 0.322
174 78.5 0.268 1.806 2.224 45.15 22.10 71.4 1.236 0.687 0.305 0.303
176 73.1 0.265 1.788 2.190 41.41 21.62 67.1 1.163 0.700 0.324 0.305

Hf 176 67.9 67.5 0.248(b) 1.812 2.190 43.88 16.95 64.3 1.228 0.578 0.245 0.301
178 64.4 64.1 0.235(b) 1.795 2.250 39.74 15.34 58.2 1.149 0.553 0.245 0.285
180 64.3 64.1 0.224(b) 1.997 2.338 33.14 14.30 50.1 0.876 0.517 0.280 0.292

W 182 60.0 59.6 0.213(b) 2.004 2.455 32.67 11.65 46.8 0.850 0.412 0.231 0.254
184 54.1 53.6 0.202(b) 2.358 2.558 25.12 10.81 38.1 0.610 0.375 0.284 0.285
186 49.0 0.194(b) 2.659 2.651 18.41 10.23 30.6 0.434 0.340 0.352 0.334
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Table III b

(a) Van den Bosch, Diamond, Sjöblom, and Fields, Phys. Rev. 115, 115 (1959).

Nucleide
2 3 
fit vexp

(MeV)-1

2* cveorr 
ft2'1

(MeV)-1
<5 A

x/l(O0
A
z/i a>0

Case B
2 o—y(2 x’n

2 o "s
h2 n

2 W h2 P OrA

Ra 226 88.5 86.2 0.176 2.377 SAIS 35.14 9.14 46.5 0.841 0.041 0.14
228 102 0.188 2.354 3.188 41.84 11.55 56.1 1.033 0.141 0.16

Th 226 83.2 81.1 0.195 2.377 2.665 40.24 18.98 62.2 0.990 0.389 0.29
228 103.6 103.1 0.199 2.354 2.673 43.55 19.82 66.5 1.097 0.428 0.28
230 113.2 112.9 0.205 2.281 2.681 48.82 21.11 73.3 1.217 0.487 0.27
232 120.5 0.214 2.134 2.689 55.96 23.05 82.9 1.321 0.576 0.26
234 125 0.206 1.990 2.696 58.33 21.27 83.2 1.337 0.495 0.23

U 230 116.1 0.215 2.281 2.673 51.25 24.58 79.7 1.341 0.666 0.30
232 127.1 126.8 0.224 2.134 2.680 59.08 26.15 89.6 1.510 0.728 0.28
234 137.9 137.9 0.219 1.990 2.687 62.32 25.23 91.8 1.499 0.691 0.26
236 132.5 0.229 1.860 2.695 68.44 26.99 100.2 1.545 0.759 0.26
238 133.9 0.232 1.741 2.703 73.76 27.48 106.2 1.662 0.778 0.25

Pu 236 134.4 (0.230) 1.860 2.252 70.04 35.25 110.3 1.703 1.072 0.32
238 136.1 136.1 0.236 1.741 2.258 74.92 36.25 116.5 1.707 1.103 0.32
240 139.9 139.5 0.240 1.652 2.264 79.50 36.85 122.0 1.777 1.124 0.30
242 134.8 (0.242) 1.642 2.271 78.83 37.14 121.8 1.723 1.132 0.31

Cm 242 142.5 (0.243) 1.642 2.259 80.80 36.88 123.6 1.793 1.003 0.30
244 (0.243) 1.698 2.265 76.82 36.87 119.6 1.655 1.001 0.31
246 139.9 (0.243) 1.804 2.271 71.02 36.85 113.7 1.349 0.999 0.34
248 138.3 (0.225) 1.891 2.277 69.94 36.48 112.2 1.221 0.990 0.34

Cf 248 (0.240) 1.891 2.332 68.03 34.30 108.0 1.277 0.894 0.33
250 142.2(a) (0.225) 1.922 2.339 69.09 34.28 109.1 1.200 0.893 0.33

to admit any further definite conclusions. An increase of ô by about 20 °/o 
corresponding to the use of an Rz = 1.08 xA1/3 fermis in eq. (41) raises 
the curves by amounts that can be studied in tig. 19. A decrease in An and 

by 10-20 °/o is certainly admissible within the inaccuracy of the experi
mental data, particularly in view of the uncertain relation between Pand A*.  
The effect of choosing 20 °/o smaller A-values may be studied in figs. 20 
and 21.

* The recent very detailed and inclusive study of relative nucleidic masses by Everling, 
König, Mattauch, and Wapstra<31), based on all relevant information available, indicates that 
a few per cent smaller Pn-values should be chosen at the end of region I.

Added in proof: The recent more complete mass-spectroscopic data published by Bhanot, 
Johnson and Nier(30) lowers the values of An and A to be used for 74W by up to 10-20°/0 
as exhibited in fig. 28. The adoption of these new zl-values would considerably improve the 
agreement with theory for the W-isotopes.
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(m«v)

150

100

Fig. 17. Moments of inertia of even-even nuclei in region I. The figure exhibits by the crossed 
line the rigid moment of inertia corresponding to 7?0 = 1.2 x A113 f. The empirical values given 
as filled circles do not include any correction for the rotation-vibration interaction. The dashed 
and dot-and-dash lines refer to calculations corresponding to the choice of J = P and A = P

... p p n n
with an assumed single-particle level spectrum ev as given according to the alternative cases 

A and B of table I.

200

150

100

0 —
224

50.

Theoretical (case A )
---- «— - (case B)
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Fig. 18. Moments of inertia of even-even nuclei in region II. For explanation see fig. 17.
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— » — C- .-)i
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Fig. 19. The dependence of the calculated moment of inertia for nuclei in region I on the eccentricity 
parameter ô. Note that the dot-and-dash line corresponds to ô as obtained from the experimental 

Q0-values of eq. (41) with the charge radius Rz chosen equal to 1.08 x A1'3 f.

It may also be of interest to note the great dependence on the type of 
wave functions employed in calculating the matrix elements of jx and sx. 
Thus the use of “asymptotic”(15) matrix elements, i. e. the employment of 
nucleonic wave functions corresponding to the limit of very large eccentric
ities, gives values considerably above the experimental points in region I 
and of the same order of magnitude as the experimental values in region II. 
As can be seen from fig. 25, the variation with (2V, Z) is much less favourable 
than in the calculations where the more accurate nucleonic wave functions 
have been employed.

It may be argued that the use of the more detailed and realistic wave 
functions is consistent with the fact that we employ the level scheme of 
ref. 16 and the empirical estimate of the eccentricity parameter ô.

The greater magnitude of 3 when the asymptotic wave functions are 
employed corresponds to the fact that while a very large fraction of the 
whole jx coupling strength lies between nearby states in the representation 
of the detailed wave functions, some of this strength and the strength con
necting very far-away states is collected in states 2-3 MeV distant in the 
asymptotic case. W hen A 0, the results are not very different in the two 
cases. In the case treated here the factor containing it and v cuts down the 
contribution from the very close-lying states most drastically (by a factor of
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Fig. 20. The dependence of the calculated moment of inertia for nuclei in region I on the chosen 
values of An and zl.

Fig. 21. The dependence of the calculated moment of inertia for nuclei in region II on the chosen 
values of zln and Zl .

five or so). This cancellation therefore affects the asymptotic case less than 
the other.

In summary, we can only conclude first that, compared with the inde
pendent-particle value, the agreement in the magnitude of 3 is rather good; 
in particular the “fine structure’’ of the A-dependence of 3 is well reproduced.
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Fig. 22. The dependence of the calculated moment of inertia for nuclei in region I on the choice of 
the energy scale parameter ft co0.

Fig. 23. The dependence of the calculated moment of inertia for nuclei in region II on the choice 
of the energy scale parameter hco0.
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T T--------r r0
224 226 228 226 228 230 232 234 230 232

Fig. 24. Correction of the moment of inertia due to the inclusion of the otherwise neglected H'2O terms 
in the calculation of u and v (cf. (A 1-6) etc.).

Fig. 25. The theoretical values of the moment of inertia when the asymptotic wave functions are used, 
compared with the case in which the more detailed wave functions of ref. 15 are employed.
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The fine-structure variation appears largely a function of <5*,  which latter 
in the calculation is taken in turn from the accurate quadrupole determina
tions of refs. 19 and 20. The systematic deviation between the results of 
the present calculations and the empirical values may very well lie within 
the inaccuracies of the parameters Ô and J and may also depend critically 
on the insufficient accuracy of the nucleonic wave functions**.

* This is also concluded from an analysis of experimental data in ref. 19.
** The effect of the usually neglected terms in (14) and (24), largely taken care of by eqs. 

(A I-6)-(A 1-8), was included in one calculation. It was found to increase 3 by only a few per 
cent, however (cf. fig. 24). Note added in proof: Calculations employing the expression (35z) for 
the moment of inertia so far performed for neutrons of Sm152, Gd156, Dy160, and W182 render 
a moment of inertia 6, 3, 2, and 16 per cent, respectively, lower than calculations on the basis 
of eq. (35), under the assumption of the same value of Gn. According to table Ila calculations 
that take blocking into account in addition require slightly larger G-values to fit the odd-even 
mass difference. The preliminary results thus indicate that, all in all, the inclusion of the com
plicated „blocking effects” leads to values of the moment of inertia of the order of 10°/0 lower. 
The disparity with empirical findings is therefore increased.

*** 'jhg present calculations by PrangeI32) appear to support such a supposition.

There are, however, also other effects which might be responsible for 
the deviation. They are connected with the limitations in the form of the 
interaction Hamiltonian assumed and with the approximate character of 
the BCS solution**  corresponding to the given Hamiltonian.

As pointed out in connection with eq. (5), the assumed type of nucleonic 
interaction, given by that equation, admits scattering of pairs solely in 
Æ = 0 states. In particular, the scattering in the K = 1 state, that is the inter
mediate two-quasi-particle state in the cranking formula, is neglected. The 
inclusion of such an interaction would probably lend to depress somewhat 
the lowest-lying K = 1 states. By that effect alone the energy denominators 
of eq. (35) would be somewhat cut down and $ correspondingly increased.

The inclusion of such effects is of interest also for the following reason: 
In the limit of an infinite nucleus, A->°o, the level density of single-particle 
states increases proportionally to A. As G, owing to the decreasing overlap, 

tends to zero as thus A in this limit goes towards a constant(6). Finally, 

all the contributing states ev are swallowed up by the energy gap, and the 
term containing u and v makes 3 vanish identically in this limit. This con
sideration of the limiting behaviour of the solution appears to bear out the 
contention that some terms are missing in the Belyaev expression which 
would contribute the irrotational moment in the limit considered^ . It 
remains to be shown, however, whether the terms present e. g. in the d-force, 
but neglected in the pairing interaction, can bring about the expected be
haviour in the limit of A->°o***.
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b. The collective gyromagnetic ratio gR

The calculated value of gR for even-even nuclei is exhibited in figs. 26 

and 27. As gR is approximately equal to it is less sensitive to e. g.

an increase in ô, which affects and in very much the same way. That

the value of //„ comes out smaller than the ratio ——— is largely due to 
jr Z + N J

the fact that we have employed a value of Ap considerably larger than Zlw. 
Furthermore, “fine structure” effects in figs. 26 and 27 are due in particular 
to the fact that it is mainly the nucleons outside of closed shells (z, n) that 
contribute to and $n, whence the relevant ratio of comparison should 

z Z
be ------rather than —— -. The former ratio exhibits a much faster variation

z + n Z + N
within a sequence of isotopes at the beginning and the end of shells. At 
the end of the shells the holes play the parts of the particles at the beginning 
of the shells, and so the trend of gR within a series of isotopes is reversed. 
Fig. 26 also exhibits a comparison with experimental values of gR for even
even nuclei, taken from a recent compilation by Bodenstedt(33) *.  The ex
perimental errors are very large, as indicated in the figure. The values to 
the left correspond to measurements by Goldring and Sharenberg<34>, 
involving an angular-distribution measurement of the E‘2 gamma radiation 
emitted in the decay of the first rotational state. This state has been reached 
by Coulomb excitation and, during its very short lifetime, it is under 
the influence of a strong external magnetic field. Owing to paramagnetic 
effects connected with the unfilled atomic 4/'shell the strength of this field 
is very much increased at the nucleus, which enhances the angular effects 
studied. However, as the atomic configurations are not known with sufficient 
accuracy, the interpretation of the angular-distribution measurements in 
terms of gR becomes very uncertain. Indeed, on the basis of new atomic 
wave functions calculated by Kanamori(35) and Süssmann(36), Bodenstedt 
et al(33) have adjusted the values of gR originally given* 34*.  The experimental 
points on the right side in fig. 26 arc based on very similar experiments* 37*,  
involving, however, a population of the rotational state by beta decay in
stead of by Coulomb excitation.

* We are very much indebted to Dr. Bodenstedt for his kind permission to quote his 
values of gR in advance of publication.

In view of the uncertainties of the experimental values, the agreement 
with the present calculations cannot be considered unsatisfactory.
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Fig. 26. Collective gyromagnetic ratios of even-even nuclei in region I. The theoretical values cor
responding to the single-particle level scheme of “case B”, An - Pn, A = P , and Ii0 = Rz = 
1.2 x 10—13/., are represented by the solid line. The measured (/^-values, with experimental 
errors as listed by BodenstedtI33), are exhibited for comparison. (The calculated values of 
gR corresponding to “case A”, which can be found in table III b, show rather slight deviations 
from those of “case B”.) Note added in proof: A recent measurement by Bodenstedt et al. on 
Er168 renders, with employment of the new(r_s) values for 4 f electrons calculated by Judd and 
Lindgren (UCRL-9188, unpublished), a very accurate value of gR = 0.32 ± 0.02. This is in 
excellent agreement with the theoretical results. (Private communication from D. Shirley.) 
Furthermore, a recent measurement by Stiening and Deutsch (Phys. Rev. Letters 6,421 (1961)) 

gives gR = 0.36 ±0.06 for Gd154.

Turning now to odd-A nuclei, many data are available from magnetic- 
moment measurements and Ml branching ratios within the ground-state 
rotational bands. From such information gR and gK may be determined. 
In the limit in which the Coriolis coupling (and furthermore the difference 
in d between the odd and the even nucleide) may be neglected, this gR 
is simply the same as that of the adjacent even-even nucleus. The effect 
of the Coriolis force, coupling the near-lying one-quasi-particle states, can 
now be accounted for in first approximation by a renormalization of gK 
and gR with respect to their adiabatic values<38). An analysis of the experi
mental material in terms of the simple unperturbed formulae therefore 
yields the renormalized values g'R = g°R + ögR and j7k = <7# + where
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°°22 ’ 2$6 2^*226  228 230 232 234lf23O 232 234 236 238236 238 240 24^242 244 246 245250 252 *

Fig. 27. Collective gyromagnetic ratios of even-even nuclei in region II. The theoretical values re
presented by the solid line correspond to the single-particle level scheme of “case B”, and An = 
Pn, = Pp. The dashed line represents the ratio Z/A corresponding to “homogeneous flow’’.

<53(1)o) <w>)
—£— (9i - 9r) +----- --------(9S - 9i) ■ (48)

In eq. (48) is the contribution of the odd particle to the moment of 
inertia connecting the one-quasi-particle state v with other states of the 
same kind. If the quasi-particle formulation is sufficiently accurate to 
estimate this difference, <53(1)(v) should be very nearly equal to the odd-even 
difference in moments of inertia^39). Some of this difference, however, might 
be due to the effects of blocking. Blocking effects contributing to ôgR may 
also be included in eq. (48) through Similarly, <5W(1)(v) is the con
tribution to the expression W of the odd particle occupying the orbital v.

Now <5Q(1) is always a positive quantity. This is normally the case also 
with As the first term always dominates, in all cases of practical inter
est ôgR is positive for protons (gt= 1, gs = 5.56) and negative for neutrons 
(<7; = 0, gg=- 3.83). Indeed, in their analysis of the empirical values of 
gR and gK for odd-A nuclei Bernstein and de Boer(40) find values of gR 
for odd-N nuclei on the average 0.1 magneton lower than those for the odd-Z 
nuclei. This is qualitatively in agreement with (48). One might now at
tempt to apply (48) as a correction to the values found by the straight
forward analysis, in order to obtain the unperturbed values g°R. If one inserts

Mat. Fys. Medd. Dan.Vid. Selsk. 32, no. 16. 4 
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in this formula for the empirical odd-even differences in the moment 
of inertia and estimates the somewhat smaller second term by its “asymp
totic” expression(15), one usually linds too large corrections ôgR. Now, the 
spin matrix elements empirically turn out to be systematically much smaller 
(about 50 °/o) than those calculated from the single-particle wave functions. 
This is evidenced e. g. by the plots of magnetic moments (theoretical and 
experimental) exhibited in ref. 16. This reduction may be explained in 
terms of the spin polarization elfect(41) whereby e. g. in the case of an odd 
proton the spin-dependent part of the two-nucleon interaction tends to align 
the spins of the neutrons parallel to, and the spins of the other protons anti
parallel to, the direction of the odd-proton spin. This polarization then ef
fectively diminishes the magnetic dipole strength. Even with a 50 °/o reduc
tion of the latter term the correction factor ögR still appears somewhat too 
large. In view of the uncertainty of the correction ögR, clearly one cannot 
point to a definite disagreement with the theoretical values. One might 
tentatively say, however, that the experimental p^-values are on the whole 
10-20 °/o smaller than the calculated ones(42).
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accurate point

Pn ( Z , N ) = 1/4 [-Sn (Z, N + I ) + 2Sn ( Z,N )-Sn ( Z,N-I )] 
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®More inaccurate point
• More
□ Point obtained from beta-decay energies 

---- Averaged P

A
Fig. 28 (added in proof). Represents a revision of fig. 1 by the inclusion of recently published 

(Oct. 1960) mass-spectroscopic data, ref. 30.
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of fig. 28 in obtaining the dashed curve of this figure. The latter curve may then be compared 
with the six points of the figure which are based directly on masses of isotones as listed in ref. 30.
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Appendix I

On the Quasi-Particle Approximation

The calculations reported in the main text rest on various approximations 
leading up to the simple quasi-particle formulation employed. We will start 
the discussion from the Hamiltonian (7) as given, including its diagonal 
parts. The trial wave function (11) and, analogously, the canonical trans
formation (19) introduce a non-conscrvation in the number of particles, 
leading to wave functions describing an ensemble of nuclei rather than a 
specific nucleide. Some problems, in particular the occurrence of spurious 
states, are associated with the resulting fluctuations in the number of par
ticles. We will defer till later a few remarks on the relevance of these fluctu
ations to our present problems. First we will discuss the various approx-

G . ,
imations of relative magnitude — that have to do with the neglect of Hint etc.

The Hamiltonian (7) after the canonical transformation (19a, b) takes 
the form (20). Of interest here are the explicit expressions of the 4/-nt-terms 
H'22, H31 and H'4O. These have all been listed by Belyaev( , but we give 
them here for the sake of completeness and in a form that is particularly 
simple as we have limited ourselves to the case of a constant matrix element G.

We first consider the problem of odd-even mass differences. The ground 
state of the odd system is affected by H'31 in contrast to the even ground state. 
This interaction is of the form

H3i = (uv~ uv) xv ßv iiV'l’v'(xv' av’ + ßv’ßv') + c- c- (A i’1) 
V v'

The effect of H'zl on a one-quasi-particle state is therefore

^31 xv’ I Ü > = + G (Up - pj) uv, l>v, x+ß+ a+ I 0 >.
V

(A 1-2)

The depression — ôEw of the ground state v' due to H'2l is given in iowest
order perturbation theory by

ÔE™ (H^)~ (Al-3)

Using (18), one easily obtains an upper limit to

4
(A 1-4)
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This perturbation estimate is actually rather accurate as the close-lying 
lower levels have small matrix elements because of the factor (zz2 —p^)_ 
We have computed (A 1-3) numerically for some nuclei scattered over region I 
and have there obtained results between 50 and 80 °/o of the upper limit 
in (A 1-4).

Furthermore, the //40-term is of the form

//4'0 = llvl>v"xv ßv *v"ßß  + c- c- (A 1-5)

This couples the quasi-particle vacuum with four-quasi-particle states and 
the one-quasi-particle state with five-quasi-particle states. In both cases W40 
thus creates four new quasi-particles. Therefore, the first-order contribution 
is the same in the two cases within this formalism, except that in the second 
case the state v, with which one quasi-particle is associated, is excluded in 
the sum. An estimate of the difference in depression due to W40 indicates

Gthat this energy difference is less than or of the order of —, i. e. a few tens 
‘ 4of keV.

Furthermore, there is the effect of the neglect of the last term in eqs. 
(14), leading to the expressions (15) for uv and uv, which approximation 

Q 
is also of the order —.

2d
It is of course possible to take the neglected term in eqs. (14) into account 

in an approximate way by treating it as a perturbation. The modified form
of the population parameter z>2 is then

= (A 1-6)

where

(«V - Â) = («V - Âo) M + —o-) (AI-7)

and

^• = ]/(ev~ å) +d2. (AI-8)

The quantities of the unperturbed case, given by eqs. (15a, b), (17) and 
(18), are denoted by an index zero in the relations above. Obviously, i\, 
is not at all affected at ev = Xo, and the correction also tends to zero for | er-Â0 | 
very large, while the largest correction occurs for | ev— z{) | ~ G. On the assump
tion that the unperturbed solutions uv and vv fulfil (13) exactly, the perturbed
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in the number of

(A 1-9)

the expression for

(A I-10)

formally identical with (24') although the last terms of

(AMI)

(A 1-12)

which is just twice the uncorrected value of the odd-even mass difference. 
Most important among the neglected Hj^-terms is here probably H^, which 
we write out explicitly below :

Thus (A I-10) is
(14) and of (24) have been included to obtain (A I-10). The energy gap is 
still associated with the same A. This A, however, now corresponds to a 
somewhat different value of G according to eq. (18), as uv and uv are slightly 
changed. It may also be pointed out that the modification of v2 brought 
about by this perturbation method is largely equivalent to a small renormal
ization of G. The effect on the moment of inertia of the inclusion of the 
perturbation terms discussed may be studied in fig. 24.

As far as the odd-even mass differences are concerned, the total result 
of the effects discussed should normally not exceed an order of magnitude 
of 50 keV. There remain effects due to fluctuations in the number of par
ticles (see below), and the effects of the change of the quasi-particle vacuum 
due to the blocking by the odd particle, discussed in the main text.

It may be appropriate in this connection to make a few comments on 
the two-quasi-particle states and the empirical energy gap in even-even 
nuclei. The W^-term gives an excess energy of the lowest two-quasi-particle 
states compared with that of the ground state:

d£(2>(W1'1)-2£1„

which error may easily be compensated for ad hoc. 
Furthermore,
is simply

in terms of this same approximation,

Hii ocv + ßt ßv) ■
V

ev ~ A)
ê;

uv and uv given by (A 1-6) correspond to a small error 
particles: □

ôn ~ -—A22
V

It gives rise to matrix elements of the following type (we here denote the 
two-quasi-particle state*  by |v—v»):

* We here limit ourselves to two-quasi-particle states in which the two-quasi-particles 
refer to the same orbital v.
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«- w|H22|v-V» = - G

«-//|//22|v-v>> = -G^u^ + v^u^) (v' + v).

55

(AI-13)

(AI-14)

. It has a value close
EVEV-

There is thus lirst a negative diagonal element which is of the order of 5-lO°/o 
of the energy gap in our case. Even more important, however, appears the 
effect of the non-diagonal matrix elements (A 1-14) connecting the rather 
dense-lying two-quasi-particle states with one another. The factor + 

2 2x > i 1/1
VyVp’) can also he written as -I In

to 1/2 when ev and sv> refer to single-particle levels near the Fermi surface, 
as one would expect to be the case with the lowest-lying two-quasi-particle 
states. Thus the factor containing u and v causes no considerable reduction in 
the matrix elements. Furthermore, there are a number of states that are rather 
close-lying. The effect of the W22 terms therefore at first sight appears disastrous 
to the whole concept of the energy gap; in fact it is very largely spurious, 
however. To illucidate this point it is useful to refer to the “degenerate model”, 
where all the single-particle states ev are degenerate in energy(5). In this 
case all u:s and v:s are equal. Therefore, all off-diagonal matrix elements

Q
of /f22 are equal, and their value lies between — and G; let us call them

Gh, where x depends on the shell-filling parameter :

(A I-15)

If we diagonalize the //^-matrix with respect to the two-quasi-particle states, 
we find that the state 10 > > exhausts the strength of the matrix

V

apart from what is associated with the difference between the terms (AI-13) 
and (AI-14). The contribution to the energy in the state Ws is [ — G — (£? — l)xG]. 
The depression due to the H%2 interaction should thus amount to something 
of the order of half or more of the energy gap*.  This state Ws is, however, 
just the lowest spurion occurring in the degenerate model, as is demonstrated 
by Bohr and Mottelson in ref. 5. Its occurrence as a BCS state is con
nected with the extra degree of freedom introduced through the ensemble 
of states having slightly different numbers of particles. In the non-degenerate 
case, to the extent to which there is an energy gap at all, there must be a 
certain number £?' of states ev lying within a distance d above and below Ä.

* Indeed the exact inclusion of couplings in higher orders brings this state all the way down 
to the ground stated) (communication from B. Mottelson).
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The K = 0 quasi-particle states associated with these levels now all fall 
densely above the energy gap. In between them, all matrix elements given 
by eq. (A 1-14) are roughly constant. With respect to these states we have 
a matrix representation of of the same type as that with respect to the k? 
two-quasi-particle states in the degenerate case. The state that absorbs most 
of the strength of the coupling of between the near-lying two-quasi- 
particle states is largely spurious in analogy with the degenerate case.

There also remain to be discussed effects that have to do with the number 
of particles of the BCS wave function. The first effect, which is related to 
the variation in the average number of particles in the quasi-particle ap
proximation, is of very small magnitude, and we include it only for the 
sake of completeness. The relative difference in the number of particles 
between a two-quasi-particle state |r—and the ground state is

<< r_v|Af|_vr>>-<<0|N|0>> = 2(u2-p2) = 2^—. (AI-16)

Similarly, comparing the ground state of an odd-A nucleus with the even
even nucleide corresponding to the vacuum state, one obtains for the dif
ference in the average number of particles

<<*■]  JV | »”>> — << 012VJ 0 >> — • (AI-17)

* It is thus apparent that in comparing odd-even mass differences of e. g. isotopes one 
should compare the odd-A nucleide with the average of the two adjacent even-even nucleides; 
this average is the appropriate quasi-particle vacuum in the odd-A case.

Provided ev lies near the Fermi surface, as is the case for the ground odd-A 
state and the lowest excited even-even state, the deviation ôn is rather small*.  
Now the solutions of H' = H—ÅN are stationary with respect to variations 
in the number of particles. That is to say, the quasi-particle solution corrects 
for the error in the number of particles ôn by subtraction of an energy 
ônxÀ0, where Zo refers to the quasi-particle vacuum. However, a small 

increase in the number of particles raises 2 by —xôn. A good estimate 
of the error due to this effect should be

1 (I /
<5E(1)(<3n) = ±~—(<5n)2, (AI-18)

2 dn

where the plus sign corresponds to and the minus sign to ev) Â. In 
the cases treated in the present investigation the error from this source in 
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odd-even mass differences should be of the order of ± 5 keV. This effect 
obviously concerns also the energies of the two-quasi-particle states. The 
effect on the lower-lying excitations, according to eqs. (AI-16) and (A I-17), 
is twice that in the odd-A case, i. e. of the order of 10 keV. The higher- 
lying two-quasi-particle states are shifted by amounts of the order of a few 
hundred keV owing to this effect.

Furthermore there is an effect that is due to the fluctuations in the number 
of particles of the Bardeen wave functions. We introduce a mean square 
deviation defined by

<4 = <A2>-<2V>2. (AI-19)

For the ground state we have

<<0|A2|0>>-<<0|ïV|0>>2 = 214^^- (A 1-20)
V

In the calculations performed for the regions of deformed nuclei a typical 
value of crN is 3. The fluctuations are somewhat smaller for a one-quasi
particle state, where

<< v|A2|v>>-<<r|ïV|v>>2 = ^4 u2n2, (A 1-21)
v + i»'

which for the odd-A ground state is smaller by about one than the expression 
(A 1-20). In the actual cases this leads to a cr^-value about 5 °/o smaller, 
'fhe actual wave function thus corresponds to an ensemble of nucleides 
with slightly different numbers of particles. Thus, for instance, the BCS wave 
function corresponding to U236 contains a very large fraction of U234 and U238 
and also of Th234 and Pu238*.  Now on the average the variation in the total 
energy of nucleides, as one moves between the shells, is expected to be 
somewhat concave upwards (at least if An and Ap are kept constant over 
the Bardeen ensemble). This effect in the Bardeen approximation would 
therefore cause a greater reduction of the binding energy of the state that 
displays the larger mean square deviation in the number of particles. An 
estimate of the influence this will have on the odd-even mass differences 
requires, however, a somewhat more detailed study of the parameters of 
the self-consistent field as functions of N and Z.

* One would think that this effect would iron out in the theoretical results the rather detailed 
dependence on Z and N exhibited by the experimental moment of inertia. That this is not the 
case is due to the fact that the mixed-in components correspond to fictitious nuclei having all 
parameters except 2 in common with the (Z0N0)-nucleus in question, such as Jn, and in 
particular the eccentricity parameter <5. As the dependence of 3 on A alone is weak, the fluc
tuations are therefore unimportant in this respect.
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Appendix II

Single-Particle Matrix Elements of j

As pointed out in Appendix A of ref. 15, the interactions between the 
(spherical) harmonic oscillator shells N and N+2 due to the quadrupole 
deformation of the potential can easily be taken into account if one first 
transforms to the slightly distorted coordinates £~.'r|/coa. etc. as defined in 
eq. (A5) of the reference cited. The wave function given in the tables of 
that reference should then be considered as expressed in these distorted 
coordinates, in terms of which we have

where

and*

- It
't

X

A similar relation holds for the {/-component, while

(AII-1)

(AII-2)

(AII-3)

The exact expressions for a and b are given in (A 13) of ref. 15. The 
expansions up to the lowest order in ô are

a = 1 + - <52 + . . . (AII-4)
8 7

5=1<5+... (A 11-5)

The operator lx now connects states only within the A7-she II of these new 
coordinates, while fx connects the shells N and N+2. This is most easily 
seen if we express lx and fx in terms of the operators Pz, and S defined 
in ref. 43. Thus

z| = |/2 [sr;-R*r z]

zi = |/2 [S*r z-Rr* z]

* Such an operator f is encountered e. g. in the theory of elasticity.

(AII-6)

(AII-7)
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/■+-|/2[fi*r;_srj  (A 11-8)

r',]. (AII-9)

We have defined f+ as fx — ify and f_ as fx+ify\ f+ is then associated with an 
increase in A by one unit. The operator r*  gives rise to an increase in nz 
by one unit, R*  and S*  both raise n± by one unit, but R*  also raises A by 
one unit while S*  lowers A by one unit. From these relations it is obvious 
that I connects states with the same N while f has elements only between 
states with N values different by two. The matrix elements in the asymptotic 
representation are also trivially obtained from these relations.

In evaluating the contribution from I to the moment of inertia it proved 
essential, however, to employ the exact wave functions of ref. 15, as is 
discussed in the main text.

On the basis of eq. (AII-1) one may write the expression for the moment 
of inertia in the form

3-S(i +j<52) + 3/. (aii-io)

o
where 3 is the moment of inertia obtained when the coupling of the quad
rupole part of the nuclear potential between the shells N and N+2 is 
neglected. The term 3/ represents solely the contribution of the term f 
in (AII-1). It only amounts to about 5 °/o of the whole moment of inertia. 
As the states connected by /' lie two shells apart, the pairing effects are 
negligible. The detailed level order within the shells is also unimportant 
for an estimate of this small correction term. In the case of a pure-harmonic- 
oscillator model one finds

3/ = J^3rlg'j31rrof (AII-11)

In addition, the effect of the coupling between the shells is manifested 
1 °in the correction term — This term is associated with the extra nodes 
4

in the wave functions of one shell that are due to this coupling; it is smaller 
'vthan 3/ by a factor ——.

brig
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